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Abstract. We consider the inverse problem of reconstructing the optical parameters of the
radiative transfer equation (RTE) from boundary measurements in the diffusion limit. In the dif-
fusive regime (the Knudsen number \sansK \sansn \ll 1), the forward problem for the stationary RTE is well
approximated by an elliptic equation. However, the connection between the inverse problem for the
RTE and the inverse problem for the elliptic equation has not been fully developed. This problem
is particularly interesting because the former one is mildly ill-posed, with a Lipschitz type stability
estimate, while the latter is well known to be severely ill-posed with a logarithmic type stability
estimate. In this paper, we derive stability estimates for the inverse problem for RTE and examine
its dependence on \sansK \sansn . We show that the stability is Lipschitz in all regimes, but the coefficient

deteriorates as e
1
\sansK \sansn , making the inverse problem of RTE severely ill-posed when \sansK \sansn is small. In this

way we connect the two inverse problems. Numerical results agree with the analysis of worsening
stability as the Knudsen number gets smaller.
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1. Introduction. Optical tomography (OT) is a technique that uses low-energy
visible or near-infrared light in the wavelength region (650nm \sim 900nm) to illumi-
nate highly scattering media [3]. In OT, based on measurements of scattered and
transmitted light intensities on the surface of the medium, a reconstruction of the
spatial distribution of the optical properties, for instance, absorption coefficient, \sigma a,
and scattering coefficient, \sigma s, inside the medium is attempted. OT has potential
applications to a variety of science and engineering fields, including oceanography, at-
mospheric science, astronomy, and neutron physics [33]. More recently, OT has found
an application to medical imaging, and this application has received considerable at-
traction. In particular, visible or near-infrared light is sent into tissues, and then one
can distinguish between healthy and unhealthy tissues from the reconstructed optical
parameters.

However, the problem has not been fully understood mathematically. In fact,
there are a variety of forward models for describing photon propagation. The two
widely applied models are the radiative transfer equation (RTE, also known as the
linear Boltzmann equation) and the diffusion equation (DE). What is intriguing here
is that these two models are good approximations to each other in the diffusion regime

\ast Received by the editors August 15, 2018; accepted for publication (in revised form) August 28,
2019; published electronically December 3, 2019.

https://doi.org/10.1137/18M1207582
Funding: The work of the first author was partially supported by a start-up grant from the

University of Minnesota and the NSF grant DMS-1714490. The work of the second author was
partially supported by NSF grant DMS1619778 and TRIPODS 1740707. The work of the third
author was partially supported by NSF grant DMS-1265958 and a Si-Yuan Professorship at HKUST.

\dagger School of Mathematics, University of Minnesota, Minneapolis, MN 55455 (rylai@umn.edu).
\ddagger Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53706 (qinli@math.

wisc.edu).
\S Department of Mathematics, University of Washington, Seattle, WA 98195 (gunther@math.

washington.edu), and HKUST Jockey Club Institute for Advanced Study, HKUST, Clear Water
Bay, Kowloon, Hong Kong.

2340

D
ow

nl
oa

de
d 

06
/0

2/
20

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

https://doi.org/10.1137/18M1207582
mailto:rylai@umn.edu
mailto:qinli@math.wisc.edu
mailto:qinli@math.wisc.edu
mailto:gunther@math.washington.edu
mailto:gunther@math.washington.edu


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

INVERSE PROBLEMS FOR THE TRANSPORT EQUATION 2341

where the Knudsen number (\sansK \sansn ) in the RTE is small, while the corresponding inverse
problems are proved to be mildly ill-posed and severely ill-posed, respectively. The
aim of this article is to study the connection between these two models in the inverse
problem setting. More precisely we study the stability estimate of the parameter for
the RTE, and make its dependence on \sansK \sansn explicit. We will show that despite the fact
that the stability is H\"older-like, its coefficient blows up in an exponential fashion for
small \sansK \sansn . The derived estimate provides evidence that reveals the severe ill-posedness
could occur when the RTE is in the diffusion regime.

We now give a brief review of both models.

1.1. RTE and its inverse problem. The widely applied equation in optical
imaging is the RTE:\Biggl\{ 

v \cdot \nabla xf(x, v) + (\sigma a(x) + \sigma s(x))f(x, v) - \sigma s(x)
\int 
V
p(v\prime , v)f(x, v\prime )dv\prime = 0,

f | \Gamma  - = given data,
(1.1)

which models photon transport in tissues at the position x \in \Omega in the direction v \in V
[3, 4, 26]. In (1.1), f(x, v) is defined on the phase space, and it represents the density
of particles at position x with velocity v in an open set V . Moreover, \sigma a and \sigma s
are two optical parameters representing the absorption coefficient and the scattering
coefficient, respectively. In particular, these optical parameters model how likely a
photon particle is absorbed or scattered by the media. The scattering phase function
is

k(x, v, v\prime ) = \sigma s(x)p(v, v
\prime )

that defines the probability that during a scattering event, a photon from direction
v\prime is scattered in the direction v at the point x. We also define the total absorption
coefficient by \sigma = \sigma a+\sigma s. It measures how likely a photon with velocity v disappears
(from either being absorbed or scattered).

We consider the physical domain \Omega , which is a subset of Rn, n = 2, 3. Suppose
that \Omega is a bounded open convex set with C1 boundary \partial \Omega . Let V be the velocity
domain which is an open set in Rn. We assume that there are constants M1 and M2

such that

(1.2) 0 < M1 < | v| < M2

for all v \in V . In addition, \Gamma + and \Gamma  - are used to denote the coordinates on the
physical boundary associated with the outgoing and incoming velocities, respectively,

\Gamma \pm = \{ (x, v) \in \partial \Omega \times V : \pm nx \cdot v > 0\} ,

where nx is the unit outer normal to \partial \Omega at the point x \in \partial \Omega . The boundary condition,
therefore, is placed on \Gamma  - .

The inverse problem for the transport equation amounts to reconstructing the un-
known optical parameters \sigma a+\sigma s and k from the boundary measurement. Specifically,
the boundary data we utilize is the albedo operator:

\scrA : f | \Gamma  - \rightarrow f | \Gamma + ,

which maps from the incoming photon density f | \Gamma  - to the outgoing photon density
f | \Gamma +

. Thus, the inverse transport problem is to reconstruct \sigma a + \sigma s and k from the
entire albedo map.
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2342 RU-YU LAI, QIN LI, AND GUNTHER UHLMANN

The theoretical approach on the reconstruction of the optical parameters (\sigma , k) is
based on the singular decomposition of the Schwartz kernel \alpha = \scrA 1 +\scrA 2 +\scrA 3 of the
albedo operators \scrA , where \scrA j , j = 1, 2, 3, are described in section 2.2. For detailed
discussion, we refer the reader to [14, 16, 35]. In the remainder of this subsection, we
briefly discuss how this approach enables the reconstruction of the coefficients \sigma and
k through the study of the kernel.

We address the properties of the kernel \scrA j for both the time-independent problem
and the time-dependent problem. For the time-independent problem in dimension
n \geq 3, one can observe that \scrA 1 and \scrA 2 are delta functions, while \scrA 3 is a locally
L1 function. Thus, \scrA 3 can be distinguished from \scrA 1 + \scrA 2. In addition, \scrA 1 can be
separated from \scrA 1+\scrA 2 since \scrA 1 and \scrA 2 have different degrees of singularities. From
the information of \scrA 1, the parameter \sigma can be reconstructed. Moreover, one can
further recover k from \scrA 2. As for the time-dependent problem, a similar procedure
can be used to recover both \sigma and k for any dimension n \geq 2 without additional
assumption on k. However, in the two-dimensional case for the time-independent
problem, since \scrA 2 is a locally L1 function as well, it cannot be distinguished from \scrA 3.
Therefore, the same approach does not work for recovering k. However, \scrA 1 and \scrA 2

are still distinguishable; as a result, one can still recover \sigma for the stationary case in
two dimensions.

In the absence of the time variable, it is the inverse stationary transport problem
which contains less data compared to the time-dependent transport problem. This
inverse stationary transport problem is overdetermined in dimension n \geq 3 since the
kernel of \scrA depends on higher dimensions than those on which the parameters \sigma and k
depend. The unique result for both optical parameters \sigma and k was studied in [15, 16].
The associated stability estimate was derived in [5, 6, 7, 38] in dimension n \geq 3.
However, in n = 2, the problem is only formally determined for the reconstruction of
k, but it is still overdetermined for the reconstruction of \sigma . It was investigated in [36]
that when a smallness assumption on k is imposed, both coefficients \sigma and k can be
uniquely determined. Finally, we remark that the unique determination of \sigma and k
for the time-dependent transport equation was studied in [13, 14] for any dimension
n \geq 2 without assuming any smallness assumption on k.

1.2. Diffusion equation and its inverse problem. Depending on the rela-
tion between the scattering coefficient \sigma s and the absorption coefficient \sigma a, the RTE
can sometimes be approximated by the diffusion approximation. More specifically, in
scatter dominated materials the diffusion approximation remains valid, but in mate-
rials where \sigma a dominates or is comparable to \sigma s, the diffusion approximation is not
a suitable model. The first case is seen in breast tissue where \sigma s is much larger than
\sigma a at appropriate wavelengths (650nm \sim 900nm) [18]. More work on breast image
studies can be found in [17, 19]. However, when the absorption coefficient of the
medium is similar to the scattering coefficient, the diffusion approximation might not
be a good approximation to describe the photo migration in biological tissues. For
example, in the blood vessels or organs with a high blood perfusion, such as in the
liver, the approximation does not hold at any wavelength. We refer the interested
reader to [20], for instance.

Assume that the scattering effect dominates; then the diffusion equation is mod-
eled by

 - C\nabla x \cdot (\sigma  - 1
s \nabla x\Phi (x)) + \sigma a\Phi (x) = 0(1.3)

with a constant C. Note that the diffusive medium takes the reciprocal of \sigma s, and the
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photon intensity is defined by

\Phi (x) =

\int 
V

f(x, v)dv .

We refer to [4] for a detailed discussion on the transport equation in the diffusive
regime, and only cite the results here.

Now we consider the strong scattering case. We define the total absorption coef-
ficient and the scattering coefficient in the diffusion limit:

\sigma \sansK \sansn (x) = \sansK \sansn \sigma a + \sansK \sansn  - 1\sigma s for 0 < \sansK \sansn \ll 1(1.4)

and
k = \sansK \sansn  - 1\sigma s(x).

In order to make our approach and idea clear, we set the phase function p(v\prime , v) to
be 1. For a more general p which is not singular, since the phase function does not
affect the estimate of the total absorption coefficient, similar stability estimates as in
Theorem 1.2 are expected to be valid as well. Hereafter, we replace \sigma by \sigma \sansK \sansn and k
by \sansK \sansn  - 1\sigma s in (1.1), and we have the RTE in the diffusion regime:\biggl\{ 

v \cdot \nabla xf(x, v) + \sigma \sansK \sansn (x)f(x, v) - \sansK \sansn  - 1\sigma s(x)
\int 
V
f(x, v\prime )dv\prime = 0 in \Omega \times V,

f | \Gamma  - = f - .
(1.5)

The following result can be proved from [10, 11, 28, 29, 39].

Theorem 1.1. Suppose that f solves (1.5). As \sansK \sansn \rightarrow 0, f(x, v) converges to
\rho (x), where \rho (x) solves the diffusion equation:

(1.6) C\nabla x \cdot (\sigma  - 1
s \nabla x\rho ) - \sigma a\rho = 0 .

Here C is a constant depending on the dimension of the problem. The boundary
condition is determined by

(1.7) \rho | \partial \Omega = \xi f

with \xi f (x0) = f lz\rightarrow \infty , where f l solves the boundary layer equation:

v\partial zf
l = \sigma s

\biggl( \int 
f l(z, v\prime )dv\prime  - f l

\biggr) 
, z \in [0,\infty ) with f l| z=0 = f - (x0, v).

Moreover, one has
1.

\int 
(v \cdot nx0

)f(x0, v)dv = \sansK \sansn \sigma  - 1
s \partial nx0

\rho (x0) +\scrO (\sansK \sansn 2), and
2. if f - (x, v) = f - (x) is independent of v for all x \in \partial \Omega , then \rho | \partial \Omega = \xi f = f - .

Remark 1.1. We define the averaged albedo operator for the problem (1.5) by

\scrA ave[f - ] = \sansK \sansn  - 1

\int 
(v \cdot nx)f(x, v)dv ,

and define the Dirichlet-to-Neumann (DtN) map for the diffusion equation (1.6) by

\Lambda [\rho | \partial \Omega ] = \partial nx\rho (x) .

Assume that the incoming boundary condition f - is homogeneous in v. According to
Theorem 1.1, f - (x0) = \rho (x0) on \partial \Omega , and the averaged albedo operator converges to
the DtN map, namely,

(1.8) \scrA ave[f - ] - \Lambda [\rho | \partial \Omega ] = \sansK \sansn  - 1

\int 
(v \cdot nx)f(x, v)dv  - \partial nx0

\rho (x0) = \scrO (\sansK \sansn ) .
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It is well known that the inverse problem for the elliptic equation (1.6), that
is, using the DtN map to recover the coefficients in (1.6), is severely ill-posed. In
particular, it has a logarithmic type of stability estimate. This kind of estimate was
first derived by Alessandrini in [1] and was shown to be optimal in [32]. For reviews of
the stability issue and Calder\'on's problem, we refer the reader to [2, 37]. In contrast
to the inverse problem for the elliptic equation, the inverse problem for the RTE (1.5)
has a H\"older type stability; see [5, 6, 7, 38].

1.3. Main result. In this article, we are interested in bridging the stability es-
timates for these two inverse problems. We are motivated by the study of increasing
stability behavior for several elliptic inverse problems when the frequency gets higher.
It is known that the logarithmic stability makes reconstruction algorithms challeng-
ing since a small error in the data could be magnified exponentially in the numerical
reconstruction. The research on increasing stability therefore arises from the desire to
design a more reliable reconstruction algorithm. Its central idea is to obtain stability
estimates that contain two parts: one is H\"older, the other is logarithmic, and their
associated coefficients explicitly depend on certain parameters (frequency) in the for-
ward model. With the frequency chosen in a suitable range, one part of the estimate
dominates the other, which leads to increasing stability or stability deterioration. This
type of problem has been addressed in [21, 23, 24, 25, 27, 30, 34] in different contexts.
We also refer the interested reader to the book [22] for more detailed discussion on the
study of increasing stability in different problems. For the reconstruction of optical
parameters in RTE, particularly in [8, 9] the authors studied the stability of the in-
version with respect to the modulation frequency in a time-harmonic setting for RTE,
and found that the increasing of the frequency brings more details in the recovery.
Without the time dependence, the stability deterioration of the linearized problem
was investigated in [12]. Unknown to us during our study for the current work, par-
allel research was conducted in [40], where the authors showed that the instability is
also of exponential type.

In this paper, we investigate the stability estimate for the RTE based on the
analysis of the albedo operator and, moreover, we trace its explicit dependence on
\sansK \sansn . Assume that the media (\sigma \sansK \sansn ,\sansK \sansn 

 - 1\sigma s) are admissible (made clear in section 2.2)
and satisfy

\| \tau \sigma \sansK \sansn \| L\infty <\infty ,

\bigm\| \bigm\| \bigm\| \bigm\| \tau \int 
V

\sansK \sansn  - 1\sigma s(x)dv

\bigm\| \bigm\| \bigm\| \bigm\| 
L\infty 

<\infty , and \sigma \sansK \sansn \geq 
\int 
V

\sansK \sansn  - 1\sigma s(x)dv(1.9)

for almost everywhere (a.e.) x \in \Omega which ensures the boundary value problem (1.5)
being well-posed. We define the space

(1.10) \scrP = \{ u \in Hn/2+r\prime (\Omega ) : u \geq 0, supp(u) \subset \Omega , \| u\| Hn/2+r\prime (Rn) \leq M3\} 

for n = 2, 3 and for some r\prime > 0. Here supp(u) denotes the compact support of a
function u.

Our main result is stated as follows, and its proof will be given in section 3.

Theorem 1.2 (stability estimate with explicit \sansK \sansn dependence). Let \Omega be a
bounded open convex set in Rn, n = 2, 3 with C1 boundary \partial \Omega , and let 0 < \sansK \sansn < 1.
Suppose the assumption (1.9) holds and the functions \sigma a, \sigma s, \~\sigma a, and \~\sigma s are in \scrP .
We denote \scrA and \~\scrA as albedo operators associated with media pairs (\sigma \sansK \sansn ,\sansK \sansn 

 - 1\sigma s)
and (\~\sigma \sansK \sansn ,\sansK \sansn 

 - 1\~\sigma s), respectively. Then for some \theta \in (0, 1), there exists a constant C,
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independent of \sansK \sansn , such that the estimate

\| \sigma \sansK \sansn  - \~\sigma \sansK \sansn \| L\infty \leq C\sansK \sansn  - 1+\theta eC\theta \sansK \sansn 
 - 1

\| \scrA  - \~\scrA \| \theta \ast 

holds, where \| \cdot \| \ast is the operator norm from L1(\Gamma  - , d\xi ) to L
1(\Gamma +, d\xi ).

Moreover, if \sansK \sansn < | log(\| \scrA  - \~\scrA \| \ast )|  - \alpha for some \alpha > 0, then

\| \sigma s  - \~\sigma s\| L\infty \leq C\sansK \sansn | log(\| \scrA  - \~\scrA \| \ast )|  - \alpha + C\sansK \sansn \theta eC\theta \sansK \sansn 
 - 1

\| \scrA  - \~\scrA \| \theta \ast (1.11)

and

\| \sigma a  - \~\sigma a\| L\infty \leq C\sansK \sansn  - 3| log(\| \scrA  - \~\scrA \| \ast )|  - \alpha + C\sansK \sansn  - 2+\theta eC\theta \sansK \sansn 
 - 1

\| \scrA  - \~\scrA \| \theta \ast .(1.12)

This theorem shows that the exponential component occurs in the stability esti-
mates (1.11) and (1.12) within a certain range of \sansK \sansn . This provides certain evidence
which shows that the H\"older stability for the RTE can be connected to the logarithmic
stability for the Cald\'eron problem. For more detailed discussion, see remarks at the
end of section 3.

We comment that in [40], the authors investigated the ``instability"" (instead of
``stability"") of the problem and its dependence on \sansK \sansn . In some sense, their work gives
a \geq sign in (1.11) and (1.12) above. Their work, together with ours, forms a complete
picture.

This paper is organized as follows. In section 2, we discuss preliminaries and
state several known results about the albedo operator decomposition. Section 3 is
devoted to the study of the stability estimate whose coefficient explicitly depends on
the Knudsen number. Numerical examples are provided in section 4 that confirm both
the H\"older stability and the logarithmic ill-posedness for small \sansK \sansn , and therefore the
numerical experiments are in agreement with the statements in Theorem 1.2.

2. Preliminaries. In this section, we recall several function spaces and intro-
duce notation, as well as some known results. They are relevant in our setup and in
the reconstruction of the optical parameters discussed in section 3.

2.1. Function spaces. We define the Sobolev spaces Hs(Rn) in the whole space
by

Hs(Rn) =
\bigl\{ 
u \in \scrS \prime : \| \langle D\rangle su\| L2(Rn)

\bigr\} 
,

where \langle D\rangle su := \scrF  - 1((1 + | \xi | 2)s/2\scrF u). Here \scrF u denotes the Fourier transform of u
and \scrS \prime is the dual of the Schwartz space \scrS . In addition, for an open set U in Rn, we
define the class of functions in Hs(Rn) which is restricted in U by

Hs(U) = \{ u| U : u \in Hs(Rn)\} .

Moreover, we define the measure on the incoming and outgoing coordinates \Gamma \pm 
by

(2.1) d\xi (x, v) = | nx \cdot v| d\mu (x)dv

with the measure d\mu (x) defined on the boundary \partial \Omega . We also denote L1(\Gamma \pm , d\xi ) to
be the space consisting of functions u satisfying\int 

\Gamma \pm 

| u(x, v)| d\xi (x, v) <\infty .
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2.2. Kernel of the albedo operator. We consider the boundary value problem
with Dirichlet boundary condition for the stationary transport equation:\biggl\{ 

v \cdot \nabla xf(x, v) + \sigma (x, v)f(x, v) - 
\int 
V
k(x, v\prime , v)f(x, v\prime )dv\prime = 0 in \Omega \times V,

f | \Gamma  - = f - .

The pair (\sigma , k) is called admissible if

0 \leq \sigma \in L\infty (\Omega \times V )(2.2)

and

0 \leq k(x, v\prime , \cdot ) \in L1(V )(2.3)

for a.e. (x, v\prime ) \in \Omega \times V . Moreover, we define the scattering cross sections by
\int 
V
k(x,

v\prime , v)dv, which is in L\infty (\Omega \times V ). The collected data is defined by the albedo operator

\scrA : f | \Gamma  - \rightarrow f | \Gamma + ,

which maps the incoming Dirichlet type boundary condition into the outgoing one.
In particular, \scrA is a bounded operator from L1(\Gamma  - , d\xi ) to L1(\Gamma +, d\xi ), as shown in
[16].

In the diffusion regime, we consider optical parameters (\sigma \sansK \sansn ,\sansK \sansn 
 - 1\sigma s), instead of

(\sigma , k) as in section 1.3. Assume that (\sigma \sansK \sansn ,\sansK \sansn 
 - 1\sigma s) is also admissible. From [13, 14,

16], it was shown that the albedo operator \scrA is bounded from L1(\Gamma  - , d\xi ) to L
1(\Gamma +, d\xi )

equipped with the kernel \alpha (x, v, x\prime , v\prime ) = (\scrA 1 +\scrA 2 +\scrA 3)(x, v, x
\prime , v\prime ), where

\scrA 1(x, v, x
\prime , v\prime ) = e - 

\int \tau  - (x,v)

0 \sigma \sansK \sansn (x - tv)dt\delta x - \tau  - (x,v)v(x
\prime )\delta (v  - v\prime ),(2.4)

\scrA 2(x, v, x
\prime , v\prime ) =  - 

\int \tau  - (x,v)

0

e - 
\int \eta 
0
\sigma \sansK \sansn (x - tv)dt - 

\int \tau  - (x - \eta v,v\prime )
0 \sigma \sansK \sansn (x - \eta v - tv\prime )dt

k(x - \eta v, v\prime , v)\delta x - \eta v - \tau  - (x - \eta v,v\prime )v\prime (x
\prime )d\eta ,(2.5)

and

| nx\prime \cdot v\prime |  - 1\scrA 3(x, v, x
\prime , v\prime ) \in L\infty (\Gamma  - ;L

1(\Gamma +, d\xi )).(2.6)

Here d\xi (x, v) is defined in (2.1). In addition, \delta (x) is the delta function on Rn and
\delta y(x) is the delta function on \partial \Omega defined by

(\delta y, h) = h(y)

for any h \in C\infty 
c (Rn). The travel time is denoted by

\tau \pm (x, v) = min\{ t \geq 0 : (x\pm tv, v) \in \Gamma \pm \} .

Notice that the kernel \scrA 1 is a singular distribution supported on the surface
x\prime = x  - \tau  - (x, v)v and v = v\prime . One can apply the different degrees of singularities
of \scrA j , j = 1, 2, 3, to distinguish \scrA 1 from the whole kernel \alpha . Thus, the information
of \sigma \sansK \sansn can be extracted from \scrA 1. More precisely, the X-ray transform (defined in
(3.10)) of \sigma \sansK \sansn will be first recovered from \scrA 1. Finally, based on this, we could derive
the stability estimate for \sigma \sansK \sansn with coefficients that depend explicitly on \sansK \sansn ; see section
3.

We recall Lemmas 2.1 and 2.2 whose proofs can be found in [16] and [38], respec-
tively.
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Lemma 2.1. Let f \in L1(\Omega \times V ). Then\int 
\Omega \times V

f(x, v)dxdv =

\int 
\Gamma \mp 

\int \tau \pm (x\prime ,v)

0

f(x\prime \pm tv, v)dtd\xi (x\prime , v) .

Lemma 2.2. Let f \in L1(\Gamma  - , d\xi ). Then\int 
\Gamma +

f(x - \tau  - (x, v)v, v)d\xi (x, v) =

\int 
\Gamma  - 

f(x\prime , v)d\xi (x\prime , v) .

These identities will play a crucial role in the derivation of the stability estimate
for the optical parameters. In particular, Lemma 2.2 implies that integrals on the
space \Gamma + and the space \Gamma  - are the same under a suitable change of variables. It will
be applied in Lemma 3.1 in order to transform the integral over the outgoing space
\Gamma + into the integral over the incoming space \Gamma  - such that the X-ray transform of
\sigma \sansK \sansn can be recovered from the leading kernel \scrA 1. As for Lemma 2.1, it gives a way
to compute the integral over \Omega \times V by using the line and surface integrals, and vice
versa.

3. Analysis of the Knudsen number. In this section, we study the stability
estimate of the absorption and of the scattering coefficient and, in particular, we keep
track of their dependence on the \sansK \sansn . We start by analyzing the total absorption
coefficient \sigma \sansK \sansn = \sansK \sansn \sigma a +\sansK \sansn  - 1\sigma s defined in (1.4). The analytic technique is based on
[15, 16, 38] with suitable adjustments to our setting.

3.1. Stability estimate of the total absorption coefficient \bfitsigma \bfsansK \bfsansn . Assuming
that the function \psi \in C\infty 

0 (Rn) satisfies 0 \leq \psi \leq 1, then \psi (0) = 1 and
\int 
\psi dx = 1. Let

(x\prime 0, v
\prime 
0) \in \Gamma  - and \varepsilon > 0. We denote the functions

\psi \varepsilon v\prime 0(v) = \varepsilon  - n\psi 

\biggl( 
v  - v\prime 0
\varepsilon 

\biggr) 
.

We also choose functions \phi \varepsilon x\prime 
0
in spatial dimensions such that 0 \leq \phi \varepsilon x\prime 

0
(x) \in C\infty 

0 (Rn)
and supp\phi \varepsilon x\prime 

0
(x) \in B\varepsilon (x\prime 0) \cap \partial \Omega . Moreover, they satisfy

\int 
\partial \Omega 
\phi \varepsilon x\prime 

0
(x)d\mu (x) = 1 and

lim
\varepsilon \rightarrow 0

\int 
\partial \Omega 

f(x)\phi \varepsilon x\prime 
0
(x)d\mu (x) = f(x\prime 0)

for any function f in C0(\partial \Omega ). For any point (x\prime 0, v
\prime 
0) in \Gamma  - , if \varepsilon > 0 is sufficiently

small, then one has

supp\phi \varepsilon x\prime 
0
(x\prime )\times supp\psi \varepsilon v\prime 0(v

\prime ) \subset \Gamma  - .

Next, we choose the smooth cut off function f\varepsilon x\prime 
0,v

\prime 
0
on \partial \Omega and on the velocity space

by

f\varepsilon x\prime 
0,v

\prime 
0
(x\prime , v\prime ) = | nx\prime \cdot v\prime |  - 1\phi \varepsilon x\prime 

0
(x\prime )\psi \varepsilon v\prime 0(v

\prime ).(3.1)

From a direct computation, one has f\varepsilon x\prime 
0,v

\prime 
0
\in L1(\Gamma  - , d\xi ). In particular, f\varepsilon x\prime 

0,v
\prime 
0
satisfies

(3.2) \| f\varepsilon x\prime 
0,v

\prime 
0
\| L1(\Gamma  - ,d\xi ) =

\int 
\Gamma  - 

| f\varepsilon x\prime 
0,v

\prime 
0
(x\prime , v\prime )| | nx\prime \cdot v\prime | d\mu (x\prime )dv\prime = 1.
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Before studying the kernel, for any fixed point (x\prime 0, v
\prime 
0) \in \Gamma  - , we define another cut

off function on \Gamma + by

\~\chi \varepsilon (x, v) := \chi \varepsilon (x - \tau  - (x, v)v, v) = \chi 1,\varepsilon 
x\prime 
0
(x - \tau  - (x, v)v)\chi 

2,\varepsilon 
v\prime 0

(v)

for any (x, v) in \Gamma +, where \chi 
1,\varepsilon and \chi 2,\varepsilon satisfy\biggl\{ 

\chi 1,\varepsilon (x) = 1 in B\varepsilon (x\prime 0) \cap \partial \Omega ,
\chi 1,\varepsilon (x) = 0 in Rn \setminus (B\varepsilon (x\prime 0) \cap \partial \Omega )

and \Biggl\{ 
\chi 2,\varepsilon (v) = 1 in supp\psi \varepsilon v\prime 0

(v),

\chi 2,\varepsilon (v) = 0 in V \setminus supp\psi \varepsilon v\prime 0(v).

The main goal of this section is to extract the information of \sigma \sansK \sansn  - \~\sigma \sansK \sansn from the
measurements \scrA  - \~\scrA . Let \alpha and \~\alpha be the distribution kernel for \scrA and \~\scrA , respectively.
We apply the cut off function on the albedo operator and then estimate the function

\~\chi \varepsilon (\scrA  - \~\scrA )f\varepsilon x\prime 
0,v

\prime 
0
(x, v)

= \~\chi \varepsilon (x, v)

\int 
\Gamma  - 

(\alpha (x, v, x\prime , v\prime ) - \~\alpha (x, v, x\prime , v\prime ))f\varepsilon x\prime 
0,v

\prime 
0
(x\prime , v\prime )d\mu (x\prime )dv\prime 

for any point (x, v) \in \Gamma +. More specifically, we will estimate each term in the right-
hand side of (3.3) which corresponds to \scrA j , j = 1, 2, 3, respectively,

\| \~\chi \varepsilon (\scrA  - \~\scrA )f\varepsilon x\prime 
0,v

\prime 
0
\| L1(\Gamma +,d\xi )

=

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
3\sum 
j=1

\~\chi \varepsilon 
\int 
\Gamma  - 

(\scrA j  - \~\scrA j)f
\varepsilon 
x\prime 
0,v

\prime 
0
(x\prime , v\prime )d\mu (x\prime )dv\prime 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L1(\Gamma +,d\xi )

.(3.3)

We start by considering the following estimate.

Lemma 3.1. For \varepsilon > 0, let f\varepsilon x\prime 
0,v

\prime 
0
be the function defined in (3.1). Then the

following identity holds:

lim
\varepsilon \rightarrow 0

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \~\chi \varepsilon 
\int 
\Gamma  - 

(\scrA 1  - \~\scrA 1)f
\varepsilon 
x\prime 
0,v

\prime 
0
(x\prime , v\prime )d\mu (x\prime )dv\prime 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L1(\Gamma +,d\xi )

=
\bigm| \bigm| \bigm| e - \int 

R \sigma \sansK \sansn (x
\prime 
0+tv

\prime 
0)dt  - e - 

\int 
R \~\sigma \sansK \sansn (x

\prime 
0+tv

\prime 
0)dt

\bigm| \bigm| \bigm| .
Proof. From the definition of the kernels A1 and \~A1, one has\int 

\Gamma  - 

(\scrA 1  - \~\scrA 1)(x, v, x
\prime , v\prime )f\varepsilon x\prime 

0,v
\prime 
0
(x\prime , v\prime )d\mu (x\prime )dv\prime 

=

\biggl( 
e - 

\int \tau  - (x,v)

0 \sigma \sansK \sansn (x - tv)dt  - e - 
\int \tau  - (x,v)

0 \~\sigma \sansK \sansn (x - tv)dt
\biggr) 
f\varepsilon x\prime 

0,v
\prime 
0
(x - \tau  - (x, v)v, v).
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Since \sigma \sansK \sansn and \~\sigma \sansK \sansn are supported in \Omega , the integration range can be extended to the
whole space R. Thus, we obtain\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \~\chi \varepsilon 

\int 
\Gamma  - 

(\scrA 1  - \~\scrA 1)f
\varepsilon 
x\prime 
0,v

\prime 
0
(x\prime , v\prime )d\mu (x\prime )dv\prime 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L1(\Gamma +,d\xi )

=

\int 
\Gamma +

\~\chi \varepsilon (x, v)
\bigm| \bigm| \bigm| e - \int 

R \sigma \sansK \sansn (x - \tau  - (x,v)v+tv)dt  - e - 
\int 
R \~\sigma \sansK \sansn (x - \tau  - (x,v)v+tv)dt

\bigm| \bigm| \bigm| 
f\varepsilon x\prime 

0,v
\prime 
0
(x - \tau  - (x, v)v, v)d\xi (x, v)

=

\int 
\Gamma  - 

\chi \varepsilon (y, v)
\bigm| \bigm| \bigm| e - \int 

R \sigma \sansK \sansn (y+tv)dt  - e - 
\int 
R \~\sigma \sansK \sansn (y+tv)dt

\bigm| \bigm| \bigm| f\varepsilon x\prime 
0,v

\prime 
0
(y, v)d\xi (y, v).(3.4)

Here the last identity holds by applying Lemma 2.2 and the fact that f\varepsilon x\prime 
0,v

\prime 
0

\in 
L1(\Gamma  - , d\xi ). Moreover, from the definition of \chi \varepsilon , it is clear that \chi \varepsilon is compactly
supported and \chi \varepsilon = 1 in (B\varepsilon (x\prime 0) \cap \partial \Omega ) \times supp\psi \varepsilon v\prime 0

. We apply the properties of the

function f\varepsilon x\prime 
0,v

\prime 
0
with (3.2) and then, by taking the limit \varepsilon \rightarrow 0 on the identity (3.4),

we conclude that\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \~\chi \varepsilon 
\int 
\Gamma  - 

(\scrA 1  - \~\scrA 1)f
\varepsilon 
x\prime 
0,v

\prime 
0
(x\prime , v\prime )d\mu (x\prime )dv\prime 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L1(\Gamma +,d\xi )

=

\int 
\Gamma  - 

\bigm| \bigm| \bigm| e - \int 
R \sigma \sansK \sansn (y+tv)dt  - e - 

\int 
R \~\sigma \sansK \sansn (y+tv)dt

\bigm| \bigm| \bigm| f\varepsilon x\prime 
0,v

\prime 
0
(y, v)d\xi (y, v)

\rightarrow 
\bigm| \bigm| \bigm| e - \int 

R \sigma \sansK \sansn (x
\prime 
0+tv

\prime 
0)dt  - e - 

\int 
R \~\sigma \sansK \sansn (x

\prime 
0+tv

\prime 
0)dt

\bigm| \bigm| \bigm| .
This finishes the proof.

For the remaining two terms in (3.3), we have the following identities.

Lemma 3.2. For \varepsilon > 0, f\varepsilon x\prime 
0,v

\prime 
0
is defined in (3.1). Then

lim
\varepsilon \rightarrow 0

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \~\chi \varepsilon 
\int 
\Gamma  - 

(\scrA j  - \~\scrA j)f
\varepsilon 
x\prime 
0,v

\prime 
0
(x\prime , v\prime )d\mu (x\prime )dv\prime 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L1(\Gamma +,d\xi )

= 0, j = 2, 3.

Proof. We first study the case j = 2. From the definition of the kernel \scrA 2 in (2.5),
the delta function \delta x - \eta v - \tau  - (x - \eta v,v\prime )v\prime (x

\prime ) acts on the function f\varepsilon x\prime 
0,v

\prime 
0
(x\prime , v\prime ). This takes

the value f\varepsilon x\prime 
0,v

\prime 
0
(x - \tau  - (x - \eta v, v\prime )v\prime  - \eta v, v\prime ). Therefore, one obtains that\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \~\chi \varepsilon 

\int 
\Gamma  - 

(\scrA 2  - \~\scrA 2)f
\varepsilon 
x\prime 
0,v

\prime 
0
(x\prime , v\prime )d\mu (x\prime )dv\prime 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L1(\Gamma +,d\xi )

=

\int 
\Gamma +

\~\chi \varepsilon (x, v)

\bigm| \bigm| \bigm| \bigm| \int 
V

\int \tau  - (x,v)

0

(\Gamma  - \~\Gamma )(x, v, x\prime , v\prime )

f\varepsilon x\prime 
0,v

\prime 
0
(x - \tau  - (x - \eta v, v\prime )v\prime  - \eta v, v\prime )d\eta dv\prime 

\bigm| \bigm| \bigm| \bigm| d\xi (x, v),
where we denote

\Gamma (x, v, x\prime , v\prime ) = \sansK \sansn  - 1e - 
\int \eta 
0
\sigma \sansK \sansn (x - tv)dt - 

\int \tau  - (x - \eta v,v\prime )
0 \sigma \sansK \sansn (x - \eta v - tv\prime )dt\sigma s(x - \eta v)
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and

\~\Gamma (x, v, x\prime , v\prime ) = \sansK \sansn  - 1e - 
\int \eta 
0

\~\sigma \sansK \sansn (x - tv)dt - 
\int \tau  - (x - \eta v,v\prime )
0 \~\sigma \sansK \sansn (x - \eta v - tv\prime )dt\~\sigma s(x - \eta v).

Note that since \sigma s and \~\sigma s are nonnegative, one gets

| \Gamma | \leq \sansK \sansn  - 1\sigma s(x - \eta v), | \~\Gamma | \leq \sansK \sansn  - 1\~\sigma s(x - \eta v).

We then interchange the integration order by using Fubini's theorem and Lemma 2.1;
therefore, we have\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \~\chi \varepsilon 

\int 
\Gamma  - 

(\scrA 2  - \~\scrA 2)f
\varepsilon 
x\prime 
0,v

\prime 
0
(x\prime , v\prime )d\mu (x\prime )dv\prime 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L1(\Gamma +,d\xi )

\leq 
\int 
\Gamma +

\int 
V

\int \tau  - (x,v)

0

\chi 2,\varepsilon (v)\sansK \sansn  - 1(\sigma s + \~\sigma s)(x - \eta v)

f\varepsilon x\prime 
0,v

\prime 
0
(x - \eta v  - \tau  - (x - \eta v, v\prime )v\prime , v\prime )d\eta dv\prime d\xi (x, v)

=

\int 
V

\int 
\Omega \times V

\chi 2,\varepsilon (v)\sansK \sansn  - 1(\sigma s + \~\sigma s)(x)f
\varepsilon 
x\prime 
0,v

\prime 
0
(x - \tau  - (x, v

\prime )v\prime , v\prime )dxdvdv\prime .(3.5)

Using Lemma 2.1 again and the bounded condition for v described in (1.2) leads to\int 
V

\chi 2,\varepsilon (v)
\Bigl( \int 

\Omega \times V
\sansK \sansn  - 1(\sigma s + \~\sigma s)(x)f

\varepsilon 
x\prime 
0,v

\prime 
0
(x - \tau  - (x, v

\prime )v\prime , v\prime )dxdv\prime 
\Bigr) 
dv

=

\int 
V

\chi 2,\varepsilon (v)
\Bigl( \int 

\Gamma  - 

\int \tau +(x\prime ,v\prime )

0

\sansK \sansn  - 1(\sigma s + \~\sigma s)(x
\prime + tv\prime )f\varepsilon x\prime 

0,v
\prime 
0
(x\prime , v\prime )dtd\xi (x\prime , v\prime )

\Bigr) 
dv

\leq diam(\Omega )

M1
\sansK \sansn  - 1\| (\sigma s + \~\sigma s)\| L\infty (\Omega )

\Bigl( \int 
\Gamma  - 

f\varepsilon x\prime 
0,v

\prime 
0
(x\prime , v\prime )d\xi (x\prime , v\prime )

\Bigr) \Bigl( \int 
supp\psi \varepsilon 

v\prime 
0
(v)

dv
\Bigr) 
.

(3.6)

In the last component of the above identity, the measure of supp\psi \varepsilon v\prime 0
(v) goes to 0

when \varepsilon \rightarrow 0. It implies that the right-hand side of (3.6) converges to zero, and thus
we obtain the conclusion of the lemma for the case j = 2.

Now we turn to the term with kernels \scrA 3 and \~\scrA 3. From (2.6), one has

| nx\prime \cdot v\prime |  - 1\scrA 3, | nx\prime \cdot v\prime |  - 1 \~\scrA 3 \in L\infty (\Gamma  - ;L
1(\Gamma +, d\xi )).

Thus, the limit of\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \~\chi \varepsilon 
\int 
\Gamma  - 

(\scrA 3  - \~\scrA 3)f
\varepsilon 
x\prime 
0,v

\prime 
0
(x\prime , v\prime )d\mu (x\prime )dv\prime 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L1(\Gamma +,d\xi )

=

\int 
\Gamma +

\~\chi \varepsilon (x, v)

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\Gamma  - 

(\scrA 3  - \~\scrA 3)(x, v, x
\prime , v\prime )f\varepsilon x\prime 

0,v
\prime 
0
(x\prime , v\prime )d\mu (x\prime )dv\prime 

\bigm| \bigm| \bigm| \bigm| \bigm| d\xi (x, v)
\leq 

\int 
\Gamma +

\~\chi \varepsilon (x, v)

\int 
\Gamma  - 

| nx\prime \cdot v\prime |  - 1| (\scrA 3  - \~\scrA 3)(x, v, x
\prime , v\prime )| f\varepsilon x\prime 

0,v
\prime 
0
(x\prime , v\prime )d\xi (x\prime , v\prime )d\xi (x, v)

\leq 
\int 
\Gamma +

\~\chi \varepsilon (x, v) sup
(x\prime ,v\prime )\in \Gamma  - 

| nx\prime \cdot v\prime |  - 1| (\scrA 3  - \~\scrA 3)(x, v, x
\prime , v\prime )| d\xi (x, v)

(3.7)
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goes to 0 as \varepsilon \rightarrow 0 by applying the dominated convergence theorem and the fact that
the measure of support of \~\chi \varepsilon converges to zero as \varepsilon \rightarrow 0. This completes the proof of
this lemma.

From (3.3), we have the estimate for the term containing \scrA 1  - \~\scrA 1:\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \~\chi \varepsilon 
\int 
\Gamma  - 

(\scrA 1  - \~\scrA 1)f
\varepsilon 
x\prime 
0,v

\prime 
0
d\mu (x\prime )dv\prime 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L1(\Gamma +,d\xi )

\leq \| \~\chi \varepsilon (\scrA  - \~\scrA )f\varepsilon x\prime 
0,v

\prime 
0
\| L1(\Gamma +,d\xi ) +

\sum 
j=2,3

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \~\chi \varepsilon 
\int 
\Gamma  - 

(\scrA j  - \~\scrA j)f
\varepsilon 
x\prime 
0,v

\prime 
0
d\mu (x\prime )dv\prime 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L1(\Gamma +,d\xi )

.

When \varepsilon goes to 0, Lemmas 3.1 and 3.2 imply\bigm| \bigm| \bigm| e - \int 
R \sigma \sansK \sansn (x

\prime 
0+tv

\prime 
0)dt  - e - 

\int 
R \~\sigma \sansK \sansn (x

\prime 
0+tv

\prime 
0)dt

\bigm| \bigm| \bigm| \leq lim
\varepsilon \rightarrow 0

\| \~\chi \varepsilon (\scrA  - \~\scrA )f\varepsilon x\prime 
0,v

\prime 
0
\| L1(\Gamma +,d\xi )

\leq \| (\scrA  - \~\scrA )f\varepsilon x\prime 
0,v

\prime 
0
\| L1(\Gamma +,d\xi )

\leq \| \scrA  - \~\scrA \| \ast \| f\varepsilon x\prime 
0,v

\prime 
0
\| L1(\Gamma  - ,d\xi )

= \| \scrA  - \~\scrA \| \ast ,

where we also use the fact that \| f\varepsilon x\prime 
0,v

\prime 
0
\| L1(\Gamma  - ,d\xi ) = 1 in the last identity. Therefore,

applying the mean value theorem on the left-hand side of the above inequalities, it
follows that

\| \scrA  - \~\scrA \| \ast \geq e - \beta \sansK \sansn 

\bigm| \bigm| \bigm| \bigm| \int 
R
\sigma \sansK \sansn (x

\prime 
0 + tv\prime 0) - \~\sigma \sansK \sansn (x

\prime 
0 + tv\prime 0)dt

\bigm| \bigm| \bigm| \bigm| ,(3.8)

where one can deduce the constant bound \beta \sansK \sansn by using once again the boundedness
of v in (1.2) as follows:

\beta \sansK \sansn = diam(\Omega )M - 1
1

\bigl( 
\sansK \sansn (\| \sigma a\| L\infty + \| \~\sigma a\| L\infty ) + \sansK \sansn  - 1(\| \sigma s\| L\infty + \| \~\sigma s\| L\infty )

\bigr) 
.(3.9)

Before going further, let us introduce some notation. We denote the set which
consists the unit vectors in Rn by

Sn - 1 = \{ x \in Rn : | x| = 1\} .

In X-ray tomography, a ray goes through the point x \in Rn and has the direction
\omega \in Sn - 1. Integrating over this ray leads to the X-ray transform Xf of f , which is
defined as

(Xf)(x, \omega ) =

\int 
R
f(x+ s\omega )ds(3.10)

for every \omega \in Sn - 1. We denote a function g in the space TSn - 1 by

\| g\| 2L2(TSn - 1) =

\int 
Sn - 1

\| g(\cdot , \omega )\| 2L2(T )d\omega ,

where T = \{ (x, \omega ) \in Rn \times Sn - 1 : x \cdot \omega = 0\} . We also denote the space

\partial \Omega \times Sn - 1
 - = \{ (x, \omega ) \in \partial \Omega \times Sn - 1 : nx \cdot \omega < 0\} .
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In particular, one can deduce that there is a constant C0 > 0 such that

\| Xf\| L2(TSn - 1) \leq C0\| Xf\| L\infty (\partial \Omega \times Sn - 1
 - )(3.11)

for all functions Xf in L\infty (\partial \Omega \times Sn - 1
 - ). Furthermore, from Theorem 3.1 in [31], for

any function f \in H - 1/2(\Omega ) with compact support in \Omega , there exists a constant C1 > 0
such that

\| f\| H - 1/2(\Omega ) \leq C1\| Xf\| L2(TSn - 1).(3.12)

Combining (3.11) and (3.12), this leads to

\| f\| H - 1/2(\Omega ) \leq C0C1\| Xf\| L\infty (\partial \Omega \times Sn - 1
 - ).(3.13)

We use this estimate to show the following stability estimate.

Proposition 3.3. We denote \^v\prime 0 = v\prime 0/| v\prime 0| to be the unit vector. Then

\| \sigma \sansK \sansn  - \~\sigma \sansK \sansn \| H - 1/2(\Omega ) \leq C0C1\| X(\sigma \sansK \sansn  - \~\sigma \sansK \sansn )\| L\infty (\partial \Omega \times Sn - 1
 - )

\leq C0C1M2e
\beta \sansK \sansn \| \scrA  - \~\scrA \| \ast ,

where \beta \sansK \sansn > 0 is defined in (3.9) and M2 is the upper bound of v stated in (1.2).

Proof. For any (x\prime 0, v
\prime 
0) \in \Gamma  - , by applying the change of variable t \mapsto \rightarrow | v\prime 0| t in

(3.8), we obtain that

\| \scrA  - \~\scrA \| \ast \geq e - \beta \sansK \sansn | v\prime 0|  - 1| X(\sigma \sansK \sansn  - \~\sigma \sansK \sansn )(x
\prime 
0, \^v

\prime 
0)| .

The desired estimates follow by applying (3.13) to the above inequality.

3.2. Proof of Theorem 1.2. The norm used in Proposition 3.3 is rather weak.
Since we assume a priori that the medium is in the function space \scrP with higher
regularity defined in (1.10), the interpolation formula could be used to lift the stabil-
ity estimate to a stronger result. Recall the interpolation formula which states the
existence of constant C2 so that

\| u\| Hs(Rn) \leq C2\| u\| \theta Hs1 (Rn)\| u\| 
1 - \theta 
Hs2 (Rn)(3.14)

for any s1 < s2 and s = \theta s1+(1 - \theta )s2 with 0 < \theta < 1. This constant purely depends
on C2 = C2(n, s1, s2). One simply needs to choose a special set of (s1, s2) to achieve
the results in Theorem 1.2.

Proof of Theorem 1.2. For a fixed r\prime > 0, let 0 < r < r\prime and s = 3
2 + r. We set

s1 =  - 1
2 and s2 = 3

2 + r\prime ; then it is clear that s1 < s < s2 and there is a constant \theta 
such that s = \theta s1 + (1 - \theta )s2. Using the interpolation formula (3.14), we have

\| \sigma \sansK \sansn  - \~\sigma \sansK \sansn \| H3/2+r \leq C2\| \sigma \sansK \sansn  - \~\sigma \sansK \sansn \| 1 - \theta H3/2+r\prime \| \sigma \sansK \sansn  - \~\sigma \sansK \sansn \| \theta H - 1/2 .

From the hypothesis of Theorem 1.2, the parameters \sigma a, \sigma s, \~\sigma a, and \~\sigma s are in \scrP 
defined in (1.10). Combining with Proposition 3.3, the inequality could be further
bounded by

\| \sigma \sansK \sansn  - \~\sigma \sansK \sansn \| 1/\theta H3/2+r \leq 
\Bigl( 
2C2M

1 - \theta 
3

\bigl( 
\sansK \sansn + \sansK \sansn  - 1

\bigr) 1 - \theta \Bigr) 1/\theta 

\| \sigma \sansK \sansn  - \~\sigma \sansK \sansn \| H - 1/2

\leq 
\Bigl( 
2C2M

1 - \theta 
3

\bigl( 
\sansK \sansn + \sansK \sansn  - 1

\bigr) 1 - \theta \Bigr) 1/\theta 

C0C1M2e
\beta \sansK \sansn \| \scrA  - \~\scrA \| \ast .
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According to the definition of \beta \sansK \sansn , one has

\beta \sansK \sansn \leq C(\sansK \sansn + \sansK \sansn  - 1)

for some constant C independent of \sansK \sansn . Thus, by applying Sobolev embedding theo-
rem, we have the following L\infty estimate for \sigma \sansK \sansn  - \~\sigma \sansK \sansn :

\| \sigma \sansK \sansn  - \~\sigma \sansK \sansn \| 1/\theta L\infty \leq 
\Bigl( 
2C2M

1 - \theta 
3

\bigl( 
\sansK \sansn + \sansK \sansn  - 1

\bigr) 1 - \theta \Bigr) 1/\theta 

C0C1C3M2e
C(\sansK \sansn +\sansK \sansn  - 1)\| \scrA  - \~\scrA \| \ast ,

(3.15)

where the constants Cj , j = 0 , . . . , 3, are independent of \sansK \sansn .
Finally, we are ready to show (1.11) and (1.12). From the definition of \sigma \sansK \sansn and

(3.15), we derive

\sansK \sansn \| \sigma a  - \~\sigma a\| L\infty \leq \sansK \sansn  - 1\| \sigma s  - \~\sigma s\| L\infty + C
\bigl( 
\sansK \sansn + \sansK \sansn  - 1

\bigr) 1 - \theta 
eC\theta (\sansK \sansn +\sansK \sansn  - 1)\| \scrA  - \~\scrA \| \theta \ast ,

where C is independent of \sansK \sansn . In particular, we obtain the following estimate for
\sigma a  - \~\sigma a:

\| \sigma a  - \~\sigma a\| L\infty \leq \sansK \sansn  - 2\| \sigma s  - \~\sigma s\| L\infty + C\sansK \sansn  - 1
\bigl( 
\sansK \sansn + \sansK \sansn  - 1

\bigr) 1 - \theta 
eC\theta (\sansK \sansn +\sansK \sansn  - 1)\| \scrA  - \~\scrA \| \theta \ast .

(3.16)

On the other hand, one can also derive an estimate for \sigma s  - \~\sigma s:

\| \sigma s  - \~\sigma s\| L\infty \leq \sansK \sansn 2\| \sigma a  - \~\sigma a\| L\infty + C\sansK \sansn 
\bigl( 
\sansK \sansn + \sansK \sansn  - 1

\bigr) 1 - \theta 
eC\theta (\sansK \sansn +\sansK \sansn  - 1)\| \scrA  - \~\scrA \| \theta \ast .

(3.17)

Assume that \| \scrA  - \~\scrA \| \ast < 1. Under the assumption that scattering dominates
absorption in a region of interest, we consider the case

\sansK \sansn < min\{ | log(\| \scrA  - \~\scrA \| \ast )|  - \alpha , 1\} (3.18)

for some constant \alpha > 0. Then from (3.17) and from the hypothesis that \sigma a, \~\sigma a \in \scrP ,
it leads to

\| \sigma s  - \~\sigma s\| L\infty \leq C\sansK \sansn 2M3 + C\sansK \sansn 
\bigl( 
\sansK \sansn + \sansK \sansn  - 1

\bigr) 1 - \theta 
eC\theta \sansK \sansn 

 - 1

\| \scrA  - \~\scrA \| \theta \ast 
\leq C\sansK \sansn | log(\| \scrA  - \~\scrA \| \ast )|  - \alpha + C\sansK \sansn 

\bigl( 
\sansK \sansn + \sansK \sansn  - 1

\bigr) 1 - \theta 
eC\theta \sansK \sansn 

 - 1

\| \scrA  - \~\scrA \| \theta \ast .(3.19)

On the other hand, one can also use a similar argument to derive the following
estimate based on (3.16), that is,

\| \sigma a  - \~\sigma a\| L\infty \leq C\sansK \sansn  - 3| log(\| \scrA  - \~\scrA \| \ast )|  - \alpha + C\sansK \sansn  - 1
\bigl( 
\sansK \sansn + \sansK \sansn  - 1

\bigr) 1 - \theta 
eC\theta \sansK \sansn 

 - 1

\| \scrA  - \~\scrA \| \theta \ast .
(3.20)

This completes the proof of the theorem.

We remark below some observations about the stability estimates which are de-
rived in the proof of Theorem 1.2.

Remark 3.1. We briefly discuss the derived estimates (3.16) and (3.17), and the
results obtained in [12]. Assume that \sigma s = \~\sigma s is given. This is the setup in sections 3.1
and 3.2 in [12]. In this setting, we study the stability of the coefficient \sigma a depending
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on the Knudsen number \sansK \sansn . Then we obtain a similar result as in [12] where the
linearized inverse problem is considered. In particular, we conclude from (3.16) that
the difference of \sigma a  - \~\sigma a could become larger if \sansK \sansn is decreasing. This also means
that a smaller \sansK \sansn leads to worse distinguishability of the absorption coefficient.

When \sigma a = \~\sigma a is known, similar to the observation in section 4.3 in [12], we have
from (3.17) that the difference of \sigma s  - \~\sigma s might also increase as \sansK \sansn shrinks.

Remark 3.2. We specifically mention the goal of the estimates (3.19) and (3.20).
In the zero limit of \sansK \sansn , the RTE becomes the diffusion equation, whose DtN map
is shown to reconstruct the media with logarithmic instability. This is reflected in
the theorem above as well. When \sansK \sansn is sufficiently small, the log(\| \scrA  - \~\scrA \| \ast ) term
appears in the estimate. Therefore, the stability estimate is connected to the log type
ill-posedness which is seen in the inverse diffusion problem.

4. Numerics. We present numerical evidence in this section. We utilize a sim-
pler model in 2D:

(4.1) v \cdot \nabla f = cos \theta \partial xf + sin \theta \partial yf =
\sigma s
\sansK \sansn 

(\langle f\rangle  - f) ,

where \langle f\rangle v =
\int 
fd\theta with d\theta is normalized. This is the critical case in the sense that

the effective absorption is set to be zero. To demonstrate stability, we consider two
sets of media with the absorption coefficients:

\sigma s = 1 for (x, y) \in \Omega , \~\sigma s =

\Biggl\{ 
1 for (x, y) \in B,

1 + z for (x, y) \in \Omega \setminus B,

where \Omega = [0, 0.6]2 and B is a ball centered at (0.3 , 0.3) with radius 0.2. Clearly,
\| \sigma s  - \~\sigma s\| L\infty = z. In computation we choose z to be 0.1\times \{ 1, 1/2, 1/4, 1/8\} .

We denote the associated albedo operator by \scrA and \~\scrA , respectively. They map
the incoming data to the outgoing data. We also denote \scrA 1 and \~\scrA 1 to be the leading
order expansion of the albedo operator, as defined in (2.4). We will show numerical
evidence from the following three aspects:

1. \| \scrA 1\| \ast decays exponentially fast with respect to \sansK \sansn ;
2. For a fixed \sansK \sansn , \| \scrA  - \~\scrA \| \ast grows in a Lipschitz manner with respect to z =

\| \sigma s  - \~\sigma s\| L\infty ;
3. For a fixed z, \| \scrA  - \~\scrA \| \ast blows up exponentially fast with respect to \sansK \sansn .

Through the entire computation, we use dx = 0.025 and d\theta = 2\pi /24 to resolve all
possible small scales. To obtain the operator norm, we need to numerically exhaust
all possible boundary conditions. We then term the collection of discrete boundary
conditions \scrS . In addition, the numerical operator norm is defined as follows:
(4.2)

\| \scrA 1\| \ast = sup\phi \in \scrS 
\| \scrA 1\phi \| L1(\Gamma +)

\| \phi \| L1(\Gamma  - )
and \| \scrA  - \scrA 1\| \ast = sup\phi \in \scrS 

\| \scrA \phi  - \scrA 1\phi \| L1(\Gamma +)

\| \phi \| L1(\Gamma  - )
.

To obtain \scrA 1\phi in (4.2), we numerically solve

(4.3) v \cdot \nabla xf =  - 1

\sansK \sansn 
\sigma sf , with f | \Gamma  - = \phi ,

and then confine the solution on \Gamma +:

(4.4) \scrA 1\phi = f | \Gamma + .
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Similarly one can obtain \scrA \phi by replacing (4.3) with (4.1).
Exponential decay in \bfsansK \bfsansn of \bfscrA \bfone . In the first experiment, we set z = 0.1 and

choose \sansK \sansn = 2k with k varying from 1 to  - 3 in the RTE. We also evaluate \| \scrA 1\| \ast by
using the operator norm (4.2). Numerically, we observe that the operator norm of \scrA 1

decays with respect to 1/\sansK \sansn , which is seen in Figure 1. In particular, the computation
suggests that

\| \scrA 1\| \ast \sim e - 
0.1
\sansK \sansn .

In the zero limit of \sansK \sansn , the operator norm is extremely small.
We also numerically evaluate the operator norm of \scrA  - \scrA 1 and study its depen-

dence on \sansK \sansn . The numerical evidence shows that as \sansK \sansn shrinks to zero, the discrep-
ancy between \scrA and \scrA 1 grows, which agrees with the observation made in [4, 35]. We
emphasize that \scrA 1 contains the most singular information in \scrA . By separating \scrA 1

from \scrA , one is able to recover the absorption coefficients (\sigma s here). In the zero limit
of \sansK \sansn , \scrA and \scrA 1 have large discrepancy, meaning \scrA 1 has very limited contribution
in \scrA . This could potentially make the separation harder, which leads to the worse
reconstruction.

1 2 3 4 5 6 7 8

1/Kn

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

log(||A
1

|| ), z = 0.1

slope=-0.102

A
1

regression

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Kn

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

||A-A
1

|| , z = 0.1

Fig. 1. The plot on the left shows that ln \| \scrA 1\| \ast linearly decays as 1/\sansK \sansn increases. The plot on
the right shows that \| \scrA  - \scrA 1\| \ast blows up as \sansK \sansn converges to zero.

Lipschitz continuity in \bfitz . In the second experiment we set \sansK \sansn = 1 and study
the dependence of \| \scrA  - \~\scrA \| \ast on z = \| \sigma s - \~\sigma s\| L\infty . The numerical experiment suggests
that the discrepancy between the two albedo operators increases linearly with respect
to z, which agrees with our H\"older continuity result; see Figure 2.

Exponential blow-up in \bfsansK \bfsansn . In the third experiment, we fix z = 0.025 and
compare the difference between the two albedo operators \scrA and \~\scrA as a function of
\sansK \sansn . It is expected that the difference between the two albedo operators behaviors
is e - 

c
\sansK \sansn , according to Theorem 1.2, which is also what we observe numerically. As

seen in Figure 3, ln
\bigl( 
\| \scrA  - \~\scrA \| \ast 

\bigr) 
is a linear function of 1/\sansK \sansn , with slope  - 0.05. This

indicates that

ln \| \scrA  - \~\scrA \| \ast \sim  - 0.05

\sansK \sansn 
\Rightarrow \| \scrA  - \~\scrA \| \ast \sim e - 

0.05
\sansK \sansn .D
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0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

||\sigma-\tilde{\sigma}||_\infty

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
||A-\tilde{A}||_*, Kn = 1

slope=0.442

disparity

regression

Fig. 2. The plot shows that for a fixed \sansK \sansn = 1, larger \| \sigma s  - \~\sigma s\| L\infty leads to larger \| \scrA  - \~\scrA \| \ast .
In particular, they form a linear dependence.

2 4 6 8 10 12 14 16

1/Kn

-5.1

-5

-4.9

-4.8

-4.7

-4.6

-4.5

-4.4

-4.3

-4.2
log(||A-\tilde{A}||_*), z = 0.025

slope=-0.0524

disparity

regression

Fig. 3. The plot shows that \| \scrA  - \~\scrA \| \ast \sim e - 
0.05
\sansK \sansn when \sansK \sansn \rightarrow 0.

Before finishing the section, we emphasize that the numerical experiment can be
done for only limited choices of \sansK \sansn , \sigma s, and z. However, the theory gives an upper
bound for all possible combinations. It is also possible to design a special medium
whose inverse stability is better than the one suggested by the theorem.
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